adsense code

Monday, August 12, 2019

Five Ways to Make Yourself Smarter


As a "Memory Medic" committed to helping people improve their learning and memory capabilities, I am often asked in the on-line Quora.com forum questions like: "How can I make myself smarter?" I am stunned to see so many people struggling in school or the workplace who perceive a need to become smarter. Nobody seems to know how to become smarter. In fact, it is commonly believed that you cannot change your IQ, that you are stuck with whatever level you happen to have. This belief is wrong. Experimental evidence demonstrates that IQ often improves with age as infants progress through elementary school. However, by middle school and later in life IQ seems to become fixed in
most people. As far as I know, there has been little research to test this assumption. Even so, in my own experience, and others have similarly reported, going through a rigorous Ph.D. program does make you smarter. I think other things can work too.

I became sensitized to this point when I was in Graduate school at Notre Dame. I barely gained admission, because my test scores did not match their usual acceptance criteria. My major professor chastised me on multiple occasions for not being smart enough, with the comment, "Strive for insight."  If I was short on insight capability, it meant that I am not smart enough to be at Notre Dame as his student. I believed that at first. After all, my IQ score, determined in middle school, was 113, only a little above average and certainly not up to the level of Notre Dame Ph.D. graduate students. Yet my professor was also telling me that I could make myself smarter. Otherwise, what’s the point of “striving?” He couldn’t explain how to become smarter, but no doubt he had discovered this was possible from his own experience as he progressed through the rigorous education of becoming a Notre Dame priest and a earning a science Ph.D. in a prestigious University of Chicago program.
Eventually, I learned he was right on both counts: I was not smart enough, but by striving for insightfulness, I could make myself smarter. Eventually, I think I figured out how to become smarter. I know my IQ is higher now, even in old age, than it was when I was 13.  I don't know how high, and don't care to know. What matters is that I found what works for me to become smarter. I think I can explain some of that to students.

School lessons can be intimidating and sometimes “over the head” of many students. Students get discouraged when they don't understand things. When they don't understand, they struggle, and their grades suffer. They come to believe they are not smart. They may quit trying, because they wrongly conclude they don't have the ability. They become underachievers. Their belief in their incompetence becomes a self-fulfilling prophecy.

I recently took on a task of writing a curricular item for science teaching of eighth graders. The curricular item I was writing involved a "Simulated Peer Review" learning activity in which middle-school groups work together to role play being peer reviewers of a scientific research report. I give them scaffolding questions to show them what to check for, and I also totally reconstruct the report so it could be understood by middle schoolers. The published research paper I needed to re-write posed a major problem: it was so complex that even I didn’t understand it.

Figure 1. Diagram in the original research report used to explain the purpose of the study and how it was done. Original legend presented the full chemical names. From Guedes et al. 2018.

This paper was a report on drug development for pain relief. The paper was ideal for a variety of reasons, but it was unbelievably complex, with lots of chemistry and arcane acronyms, as illustrated in Figure 1. In figuring this out, I reminded myself how I was going about this task, which crystallized as five steps or principles that anyone can use to figure out most anything, and in the process develop the mental algorithms that will make you smarter.

How am I supposed to explain the ideas in this figure to 8th graders? The legend explaining all these abbreviations and relationships only made things still harder to comprehend. Here maybe was a chance to track my strategy for figuring things out, and I could formulate and explain simple steps that would be generally applicable. I kept track of the sequence of the steps I used, and now I can specify a specific sequence of tactics for developing understanding.

Step 1. Believe You Can Become Smarter. When I formulated the "Learning Skills Cycle" in a book I recently wrote for teachers and parents, the very first step in that cycle was "Motivation." A learner who is not motivated to learn will not make the effort needed to learn much. They become under-achievers. If you don't believe you can become smarter, you won't be motivated to “strive for insight.”

Step 2. Look for the Big Picture. Look first for over-all patterns. The original legend of Fig. 1 explained in an overly complicated way that damage to cell membranes triggers three chains of chemical reactions that stem from breakdown of the phospholipids that form cell membranes. Think about the purpose of the diagram: the three pathways may reveal points in the pathways where a drug might alter the response to pain. The pathway on the right is not very relevant, so you don’t have to think about it. Focus on the meaning of the other two paths.
T
he breakdown products of these membrane phospholipids, as explained in the original legend, included three relevant enzymes (COX, Cyp450, and sEH), and a host of chemicals, some of which cause inflammation and pain. The figure also indicates that enzymes are targets: anything that inhibits them would stop their action. Note the diagram shows inhibition with lines that end in a line segment instead of an arrow. We see that inhibition of only one target enzyme, COX, can help to alleviate pain (such inhibitors are already in medical use). In the other pathway, the so-called epoxy fatty acids (EpFAs) could, in theory, block the COX enzyme or have a direct inhibitory effect on inflammation and pain. However, the EpFAs are destroyed by the enzyme soluble epoxy hydrolase (sHE), so they are not available for pain relief. Note, however, that a second enzyme (sEH), if it could be inhibited by the drug t-TUCB, it would stop the destruction of EpFAs, enabling them to accumulate and exert their anti-inflammatory and pain relieving effects. This is the purpose of the study, that is, to test to see if t-TUCB can actually reduce pain, as a previous study had suggested.

3. Simplify. For thinking purposes, temporarily strip out the information that is non essential. Be discerning in what you temporarily omit from your thinking. Sometimes, small items of information (as the three lines that end in line segments) are crucial for understanding. The other key elements here are the two over-all pathways, the three enzymes they contain, and the steps in the path they i
inhibit.

For the moment, I can ignore most of the names of the compounds. They just clutter my mind with more information than I can hold in working memory to think with. I can also ignore for now the genetic mechanisms, which though important, are not central to the purpose of this present report. Likewise, I can also ignore the glucocorticoid inhibition of enzymes that break down membrane phospholipids, because these enzymes are blocked by drugs like cortisone.
The reason we need to simplify is that we think with the information that we can hold in conscious working memory (as when you try to remember a phone number you just looked up). The capacity of working memory is very limited (4-7 items at any one time). Thus, to think clearly about any confusing matter, you must not clutter your mind with more information at any one time than your working memory can handle.
Figure 2. Simplification of Fig. 1

Step 4. Reframe the Issue. Einstein was famous for reframing his problems in the form of thought experiments, such was watching movement of trains relative to each other or riding on a moonbeam. We don’t have to be as imaginative as Einstein. In this example, all we have to do is re-draw the diagram in a form that captures the essence of the key information.  So, to help my understanding, I sketched a simpler diagram that captures the big picture" in the simplest possible way (Fig. 2). Note that I gave blue color to emphasize the enzymes and red lines to indicate their inhibition. Two inhibitory influences were shown with dashes to emphasize that this was only theoretical, because the anti-inflammatory chemicals in the right-hand path are usually destroyed and thus not available or inhibition. The test drug had been shown earlier to inhibit the enzyme in the right-hand pathway. What we don’t know is if this drug actually reduces pain. Now I have the ideas framed in the most meaningful and distinct ways. At this point, I could see the crucial points, unobscured by all the detail.

Step 5. Identify the Crucial Details. The first objective is to understand the principles, and then add in whatever level of detail that is necessary. No more, no less. One of my cardinal principles of learning is flagged with the question: What is the point of learning if you don't remember it? In this particular case, learners need to put back into those details that are crucial and may have practical relevance. As I show in Figure 3, students can now see that a drug that inhibits COX could alleviate pain, as could any new drug that could inhibit sHE (soluble epoxy hydrolase) by preventing destruction of the anti-inflammatory epoxy fatty acids. Counteracting the inflammatory chemicals (prostaglandins) would also alleviate pain, and this is what many known pain relievers do. At this point, I understand the principles of pain biochemistry, and I bet 8th graders can do so too, even if they haven’t yet learned chemistry.
Figure 3. Essential detail reinserted into Fig. 2

This reminds me to tell you that in my Learning Skills Cycle, I always put the "Understand" step before the "Memorize" step. Two reasons explain why: 1) understanding allows you to simplify and reduce the amount of detail that will burden your memory, and 2) the very act of striving for the insight about the issues is helping to encode the relevant information and is rehearsal practice that will help consolidate the memory into long-lasting memory. Thinking, rather than rote repetition, is the most powerful way to memorize.

We have now arrived at the final and most practical stage in the Learning Skills Cycle, namely, Problem Solving and Creativity. Now we can get to the practical matter of using this new understanding to plan the exploration to find drugs that can alleviate inflammation and pain. Drugs that block the path on the left should reduce pain, and this is the mechanism of action of aspirin, Tylenol, and other non-steroidal drugs. In theory, we could alleviate pain by preventing the destruction of anti-inflammatory epoxy fatty acids by blocking the enzyme (sEH) that destroys them. Epoxy hydrolase is a new target for drug development, which the research paper I was rewriting aimed to test with an inhibitor of this enzyme.


I invite you to join my LinkedIn group on 
"Neuroeducation: Promoting Cognitive Development" 

Sources:
Guedes, A. G. P. et al. (2018). Pharmacokinetics and antinociceptive effects of the soluble epoxide hydrolase inhibitor t -TUCB in horses with experimentally induced radiocarpal synovitis. J.  Veterinary Pharmacology and Therapeutics 2018, 41 (2) , 230-238. DOI: 10.1111/jvp.12463.

Klemm, W. R. 2017. The Learning Skills Cycle. A way to Rethink Education Reform. Lanham, Maryland: Rowman& Littlefield. Lanham, Md., Rowman & Littlefield.

Klemm, W. R. 2013. Teaching beginning college students with adapted published research reports. J. Effective Teaching. 13 (2), 6-20.           


No comments:

Post a Comment

Please contribute your ideas. This blog is all about making learning easier for everyone.