Wednesday, February 25, 2015

Study Smart Beats Study Hard

Keep your "nose to the grindstone" is the advice we often tell young people is an essential ingredient of learning difficult tasks. A joke captures the matter with the old bromide for success, "Keep your eye on the ball, your ear to the ground, your nose to the grindstone, your shoulder to the wheel: Now try to work in that position."


Over the years of teaching, I have seen many highly conscientious students work like demons in their study yet don't seem to learn as much as they should for all the effort they put in. Typically, it is because they don't study smart.
In an earlier post, I described a learning strategy wherein a student should spend short (say 15-20 minutes) of intense study followed immediately by a comparable rest period of "brain-dead" activity where they don't engage with intense stimuli or a new learning task. The idea is that during brain down-time the memory of just-learned material is more likely to be consolidated into long-term memory because there are no mental distractions to erase the temporary working memory while it is in the process of consolidation.
Now, new research suggests that too much nose-to-the-grindstone can impair learning. Margaret Schlichting, a graduate student researcher, and Alison Preston, an associate professor of psychology and neuroscience at the University of Texas tested the effect of mental rest with a learning task of remembering two sets of a series of associated photo pairs.  Between the two task sets, the participants rested and were allowed to think about whatever they wanted. Not surprisingly, those who used the rest time to reflect on what they had just learned were able to remember more upon re-test. Obviously, in this case, the brain is not really resting, as it is processing (that is, rehearsing) the new learning. But the brain is resting in the sense that new mental challenges are not encountered.
The university press release quotes the authors as saying, "We've shown for the first time that how the brain processes information during rest can improve future learning. We think replaying memories during rest makes those earlier memories stronger, not just impacting the original content, but impacting the memories to come." Despite the fact that this concept has been anointed as a new discovery in a prestigious science journal, the principle has been well-known for decades. I have explained this phenomenon in my memory books as the decades-old term of "interference theory of memory,"
What has not been well understood among teachers is the need to alter teaching practices to accommodate this principle. A typical class period involves teachers presenting a back-to-back succession of highly diverse learning objects and concepts. Each new topic interferes with memory formation of the prior topics. An additional interference occurs when a class period is disrupted by blaring announcements from the principal's office, designed to be loud to command attention (which has the effect of diverting attention away from the learning material). The typical classroom has a plethora of other distractions, such as windows for looking outside and multiple objects like animals, pictures, posters, banners, and ceiling mobiles designed to decorate and enliven the room. The room itself is a major distraction.
Then, to compound the problem, the class bell rings, and students rush out into the hall for their next class, socializing furiously in the limited time they have to get to the next class (on a different subject, by a different teacher, in a differently decorated classroom). You can be sure, little reflection occurs on the academic material they had just encountered.
The format of a typical school day is so well-entrenched that I doubt it can be changed. But there is no excuse for blaring loudspeaker announcements during the middle of a class period. Classrooms do not have to be decorated. A given class period does not have to be an information dump on overwhelmed students. Short periods of instruction need to be followed by short, low-key, periods of questioning, discussion, reflection, and application of what has just been taught. Content that doesn't get "covered" in class can be assigned as homework—or even exempted from being a learning requirement. It is better to learn a few things well than many things poorly. Indeed, this is the refreshing philosophy behind the new national science standards known as "Next Generation Science Standards."
Give our kids a rest: the right kind of mental rest.

Sources:

http://www.nextgenscience.org/

http://scicasts.com/neuroscience/2065-cognitive-science/8539-study-suggests-mental-rest-and-reflection-boost learning.

Schlicthing, M. L., and Preston, A. R. (2014). Memory reactivation during rest supports upcoming learning of related content. Proc. Nat. Acad. Science. Published ahead of print, Oct. 20.


Dr. Klemm's latest book, available at most retail outlets, is "Mental Biology. The New Science of How the Brain and Mind Relate" (Prometheus). See reviews at http://thankyoubrain.com

Saturday, February 07, 2015

How Learning Cursive Might Improve Reading Efficiency and Hand-eye Coordination

When directing the writing by hand, the brain has to visually track rapidly changing positions of the pencil and control hand and finger movements. To learn such skills, the brain must improve its control over eye-movement saccades and the processing of visual feedback to provide corrective feedback. Both tracking and movement control require much more engagement of neural resources in producing cursive or related handwriting methods than in hand printing, because the movements are more complex and nuanced. Thus, learning cursive is a much greater neural activator, which in turn must engage much more neural circuitry than the less demanding printing.

The key to learning successful handwriting, whether cursive, italics, or calligraphy, is well-controlled visual tracking and high-speed neural responses to the corrective feedback. Scientists are now starting to study the mechanisms, but not yet in the context of education. Two recent reports, seemingly unrelated to each other or to cursive, examined visual tracking and found results that could have profound educational implications for both reading and hand-eye coordination training, as in learning to touch type.

Visual targets are fixed by saccades. One theory is that the eyes scan the target with a linked series of saccades, in this case the changes in cursive letter structure as the letters are being rapidly formed. We already know that the brain predicts eye movements based on what they see at each saccade fixation. This is how our visual world is made stable, even though the eyes are flicking around; otherwise, the image would jitter back and forth constantly. This suggests that visual image representation is integrated rapidly over many successive saccades. The degree of tracking speed, accuracy, and prediction error must surely influence how well the letters are transcribed during handwriting. The corollary is that the better one learns to write by hand, the better the brain is learning how to track visually.

Scientists used to think that these predictions were the source of error in estimating the position of seen objects. In handwriting, for example, the brain would assess the shape of part of a letter as you draw it and predict how and where the next portion of the letter should be added. Learning how to optimize the drawing then would be a matter of learning how to reduce prediction errors.
However, a new study tested the hypothesis that if localization errors really are caused by faulty predictions, you would also expect those errors to occur if an eye movement, which has already been predicted in your brain, fails to take place at the very last moment in response to a signal to abort the eye movement. The investigators (Atsma et al. 2014) asked test subjects to look at a computer screen and tracked eye movement fixation on a very small ball that appeared at various random positions. During this task, the brain must correctly predict where the eyes have to move to keep the eye on the ball.

The experiment ended with one last ball on the screen, followed by a short flash of light near that ball. The person had to look at the last stationary ball while using the computer mouse to indicate the position of the flash of light. However, in some cases, a signal was sent around the time the last ball appeared, indicating that the subject was NOT allowed to look at the ball. In other words, the eye movement was cancelled at the last moment. The person being tested still had to indicate where the flash was visible.

Subjects did not make any mistakes in fixation on the light location during the abortion test, even though the brain had already predicted that it needed to fixate on the ball. Most mislocations occurred when the flash appeared at the moment the eye movement began. Thus, the errors seemed to be associated with neural commands for eye fixation, not with saccade predictions. The application for handwriting learning is that the neural circuits that control target fixation may be a major factor in learning how to write cursive well. Surely, these circuits would be responsive to training, though that was not done in this experiment. It would seem possible that these circuits might be trained via learning cursive to provide faster and more accurate visual tracking, which should have other benefits—as in reading.

A related study of visual tracking in monkeys reveals parallel processing during visual search (Shen and Paré. 2014). Recordings from neurons in the visual pathway during visual tracking of targets in a distracting field showed that in the untrained state, these neurons had indiscriminate responses to stimuli. However, with training the neuronal function evolved to predict where the moving target should be in advance of the actual saccade. Results also showed that more than half the neurons learned to predict where the next two eye movements (saccades) needed to be, which obviously suggests that accurate tracking can be accelerated without loss of information.

In short, learning cursive should train the brain to function more effectively in visual scanning. Theoretically, reading efficiency could benefit. I predict that new research would show that learning cursive will improve reading speed and will train the brain to have better hand-eye coordination. In other words, schools that drop cursive from the curriculum may lose an important learning-skills development tool. The more that students acquire learning skills, the less will be the need for "teaching to the test."

"Memory Medic's" latest books are 
Mental Biology (Prometheus) and Memory Power 101 (Skyhorse).

Sources:
Atsma, J. et al. (2014). No peri-saccadic mislocalization with abruptly cancelled saccades.
Journal of Neuroscience, 15 April 2014. ttp://www.jneurosci.org/content/34/16/5497.full.html


Shen, Kelly and ParĂ©, Martin. 2014.  Predictive saccade target selection in superior colliculus during visual search. The Journal of Neuroscience, 16 April 2014, 34(16): 5640-5648; doi: 10.1523/JNEUROSCI.3880-13.2014

Sunday, January 25, 2015

Health Benefits of Resveratrol: New Plaudits

Joe: My doctor told me to give up drinking, smoking, and fatty foods.
Sam: What will you do?
Joe: I think I’ll give up my doctor.

I try not to get too excited about memory benefits of supplements, because too often the claims are not substantiated by studies that are well controlled and peer reviewed. I now think resveratrol may be one of the few supplements that benefits brain function.

When I wrote my first blog on research on resveratrol benefits for brain function and memory, there were over 2,000 scientific papers.[1] Don't worry; I am only going to tell you about a few studies.

Resveratrol is an active ingredient in red wine. This compound has been credited for explaining why red-wine drinkers in France, who drink more wine than most people, are healthier than would be predicted by their lifestyle of little exercise and eating lots of cheese. The problem is most studies suggest you would have to drink a 100 or more glasses of red wine a day to get much resveratrol effect (and that effect would obviously be negated by a toxic dose of alcohol). An obviously more healthful choice is the highly concentrated pill forms of resveratrol that are now on the market.

Most of the protective biological actions associated with resveratrol have been associated with its scavenger properties for free radicals and the protective effects that it confers on the heart and diabetes. 

One important study comes from a diabetes research group in Brazil recently who reported a beneficial effect of resveratrol on diabetic rats.[2] Resveratrol (in a modest rat dose of 10 and 20 mg per kilogram per day for 30 days) prevented the impairment of memory induced by diabetes. Resveratrol may be protecting neuron terminals that diabetes can damage. An earlier study by another group showed resveratrol improved glucose metabolism and promoted longevity in diabetic mice.

Another benefit of resveratrol is the anti-oxidant property. The brain produces more free-radical damage than other organs, because it burns so much oxygen. Compared with other organs, the brain has especially low levels of antioxidant defense enzymes. 

One recent study has revealed resveratrol had protective effects against brain damage caused by a chemical that kills acetylcholine neurons. Injection of this toxin into the brain of rats impaired their memory performance in two kinds of maze tasks. The impairment was significantly reduced by repeated injection of resveratrol (10 and 20 mg/kg) per day for 25 days, beginning four days before the toxin injection.[3]

Another recent study examined effects on working memory in mice fed a resveratrol-supplemented diet for four weeks before being injected with a cytokine to induce inflammation and accelerate aging. Resveratrol significantly reduced memory impairment in the aged group, but not in the young adults[4]. The lack of benefit in young adults was a little misleading, in that there was a "ceiling effect" in that the young adults were not impaired by the cytokine injection.

 The practical issue for us is whether resveratrol will help cognitive function in humans, especially healthy humans. It seems likely because other substances that have strong anti-oxidant properties seem to improve memory capability. Because animal studies have shown promise for resveratrol in preventing or treatment several different conditions associated with aging, several human clinical trials have been initiated.[5]

 An impressive new study of older humans, male and female, has just been reported.[6] Twenty-three healthy, but overweight people completed 6 months of daily resveratrol intake (200 mg ― the commercial brand I take has 300 mg/capsule). A paired control group got placebo pills. A double-blind design assured that neither the subjects nor the experimenters knew which individuals were in each group during data processing. Memory tests of word recall revealed significant improvement in the resveratrol group. Resveratrol also increased brain-scan measures of functional connectivity, which identified linked neural activity between the hippocampus and several areas of cerebral cortex.

Because others had shown that resveratrol increased insulin sensitivity in humans, these authors examine several markers important to diabetes. Resveratrol decreased the standing levels of sugar-bound hemoglobin, a standard marker for glucose control.  

What foods besides red grapes have resveratrol? The most likely other sources you would eat or drink are blueberries, cranberries, and peanuts. It is not likely that you could drink or eat enough of such substances to get enough resveratrol to do much good. Because of the scientifically documented benefits of resveratrol, highly concentrated supplements are now on the market (I have been taking it for a couple of years). I haven't given up my two glasses of red wine each day, but I have started taking one of the supplements. I haven't seen any reports that high doses of resveratrol are toxic.




[2] Schmatz R, et al. (2009). Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2009 May 21;610(1-3):42-8. Epub 2009 Mar 19.
[3] Kumar, A. et al. 2007. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology.79 (1): 17-26. DOI: 10.1159/000097511
[4] Abraham, J., and Johnson, R. W. 2009. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation research. 12 (6): 445-453.  DOI: 10.1089/rej.2009.0888
[5] Smoliga, J. M. et al. (2011). Resveratrol and health – a comprehensive review of human clinical trials.  Mol. Nutrition Food Res. 55: 1129-1141
[6] Witte, A. V., et al. (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neuroscience. 34 23): 7862-7870.

"Memory Medic's latest book is for seniors (Improve Your Memory for a Healthy Brain. Memory Is the Canary in Your Brain's Coal Mine," available in inexpensive e-book format at https://www.smashwords.com/books/view/496252 See also his recent book, "Mental Biology. The New Science of How the Brain and Mind Relate" (Prometheus).

Saturday, January 03, 2015

Happy Thoughts Can Make You More Competent

“Life, liberty, and the pursuit of happiness:” some people might argue that the U.S. Constitution endorses hedonism, and indeed many politicians want to ignore or get rid of the Constitution, but not necessarily because of hedonism. We should not be dismissive about encouraging people to pursue happiness. Happiness can be good for your brain. Depression is surely bad for your brain.

Positive mood states promote more effective thinking and problem solving. A recent scholarly report[1] reviews the literature demonstrating that positive mood broadens the scope of attentiveness, enhances semantic associations over a wider range, improves task shifting, and improves problem-solving capability. The review also documents the changes in brain activation patterns induced by positive mood in subjects while solving problems. Especially important is the dopamine signaling in the prefrontal cortex.

Published studies reveal that a variety of techniques are used to momentarily manipulate mood. These have included making subjects temporarily happy or sad by asking subjects to recall emotionally corresponding past experiences or to view film clips or hear words that trigger happy or sad feelings,

The effect of happiness on broadened attentiveness arises because the brain has better cognitive flexibility and executive control, which in turn makes it easier to be more flexible and creative. Happy problem solvers are better able to select and act upon useful solutions that otherwise never consciously surface. Happiness reduces perseverative tendencies for errant problem-solving strategies. The broadened attentiveness, for example, allows people to attend to more stimuli, both in external visual space and in internal semantic space, which in turn enables more holistic processing. For example, in one cited study, experimenters manipulated subjects’ momentary mood and then measured performance on a task involving matching of visual objects based on their global versus local shapes. Happy moods yielded better global matching.

Other experiments report broader word association performance when subjects are manipulated to be happier. For example, subjects in a neutral mood would typically associate the word “pen” as a writing tool and would associate it with words like pencil or paper. But positive mood subjects would think also of pen as an enclosure and associate it with words like barn or pigs. This effect has been demonstrated with practical effect in physicians, who, when in a happy mood, thought of more disease possibilities in making a differential diagnosis.
The review authors reported their own experiment on beneficial happy mood effects on insightfulness, using a task in which subjects were given three words and asked to think of a fourth word that could be combined into a compound word or phrase. For example, an insightful response to “tooth, potato, and heart” might be “sweet tooth, sweet potato, and sweetheart.” Generating such insight typically requires one to suppress dominant “knee jerk” responses such as associating tooth with pain and recognize that pain does not fit potato while at the same time becoming capable of switching to non-dominant alternatives.

Other cited experiments showed that happy mood improved performance on “Duncker’s candle task.”  Here, subjects are given a box of tacks, a candle, and a book of matches, and are asked to attach a candle to the wall in a way that will burn without dripping wax on the floor. Subjects in a happy mood were more able to realize that the box could be a platform for the candle when the box is tacked to the wall.  

Such effects of happy moods seem to arise from increased neural activity in the prefrontal cortex and cingulate cortex, areas that numerous prior studies have demonstrated as crucial parts of the brain’s executive control network. Similar effects have been observed in EEG studies. Other research suggests that the happiness effect is mediated by increased release of dopamine in the cortex that serves to up-regulate executive control.
The review authors described a meta-analysis of 49 positive-psychology manipulation studies showing that momentary happiness is readily manipulated by such strategies as deliberate optimistic thinking, increased attention to and memory of happy experiences, practicing mindfulness and acceptance, and increasing socialization. The effect occurs in most normal people and even in people with depression, anxiety, and schizophrenia. Biofeedback training, where subjects monitor their own fMRI scans or EEGs, might be an even more effective way for people to train themselves to be happier.

The main point is that people can be as happy as they choose to be.

For more on how positive mood influences memory ability, see my new book, Memory Power 101 (http://skyhorsepublishing.com ). Memory Medic's latest book explores the biology of mind. See "Mental Biology. The New Science of How the Brain and Mind Relate" (Prometheus).

[1] Subramaniam, K. and Vinogradov, S. (2013). Improving the neural mechanisms of cognition through the pursuit of happiness. Frontiers in Human Neuroscience. 7 August. Doi: 10.3389/fnhum.2013.00452



Tuesday, December 23, 2014

Grit's Role in Learning

What do you think is the major determinant of whether our children excel in school? IQ? Good teachers? Good schools? Good standards and curricula? No, I say it is the students' motivation, or just plain grit. Other teachers think so too.

Education reporter, Libby Nelson, calls attention to the issue of grit in student learning achievement. Teachers and parents sometimes put too much emphasis on intelligence, when the more typical problem in education is that students don't try hard enough and are not sufficiently persistent in trying to achieve excellence.

Indeed, excellence is not even a goal for most students. Many students just want to do the minimum required to pass tests. A few students don't care at all. They just drop out. One student told a teacher friend of mine, "I don't need to learn this stuff. Somebody will always take care of me."

Nelson points to evidence of grit's importance with these examples:

·         West Point cadets who scored highest on a scale of grit were more likely to complete the grueling first summer of training.
·         National spelling bee contestants with more grit ranked higher than other contestants of the same age who had less grit.
·         College admissions officers know how important grit is (more important than SAT tests) but they don't know how to measure it other than grades, which of course may be inflated and inaccurate indicators of grit.

Clearly motivation is essential. I regard motivation as the cornerstone of what I call the "learning skills cycle." Learning begins with being motivated to learn, and successful completion of every step in the cycle strengthens motivation. However, every step in this cycle (organization, attentiveness, understanding/synthesis, memory, and problem solving/creativity) requires a degree of grit—the more, the better.


As applied to specific learning tasks, grit is central to all the ideas in the learning skills cycle. In the case of memory, for example, the well-known strategy of deliberate practice requires disciplined grit. Students diligently need to use established memory principles in a systematic way. This includes constructing a systematic learning strategy that includes organizing the learning materials in an effective way, intense study focus in short periods, elimination of interferences, use of mnemonic devices, and frequent rehearsals repeated in spaced intervals. Learning success depends on mental discipline and persistence.

Students differ enormously in their level of grit. It would be nice if we knew how to teach grit. Surely, parental influence is central. Parents lacking in grit are unlikely to model or teach it to their children. Some schools, especially private schools, teach grit by having high expectations and programs that help students discover the positive benefits that come from having more grit. One of those benefits is confidence, because grit promotes achievement and achievement develops confidence.

Confidence in the ability to learn is necessary for a student to try hard to learn. Here is the area where teaching skills count most: showing students they can learn difficult material and thereby building the confidence to take on greater learning challenges.

Students who have passionate goals are much more likely to invest effort and persistence in doing what is needed to achieve those goals. It is unrealistic to expect grade-school children to have well-formulated career goals. But certainly by early high-school, students should be forming specific lifetime goals. What a career goal is probably does matter as much as having one in the first place. Achieving a goal, regardless of whether it is later abandoned or not, teaches a youngster that grit is necessary for the achievement. The student learns that grit has a payoff.

Grit may not always lead to excellence in students with innate limited abilities. But grit allows such students to "become all they can be," as the Army recruitment slogan claims. Moreover, the benefits of grit perpetuate beyond success at any one learning challenge. Learning anything requires physical and chemical changes in the brain needed to store the positive attitudes that come from learning success and the learning content itself. In other words, the more you know, the more you can know.


Source:

http://www.vox.com/2014/10/9/6835197/grit-kipp-noncognitive-skills-duckworth-teaching

"Memory Medic's new book has just been released: "Improve Your Memory for a Healthy Brain." Smashwords.com


Friday, December 12, 2014

The Neuroscience of Why Children Play

All children, if given the chance, will play, preferably with other children. The games they play
are often creative, rough and tumble, and of course―fun. Some consequences are obvious:

·         Fun is a positively reinforcing emotion. It makes kids happy.
·         Play encourages exploration with fewer constraining boundaries than the drone of regular life.
·         Play is an effective way to socialize and make friends.
·         Play stimulates initiative and engagement, rather than passively observing what others do.

But there is another less obvious reason, one that is biological. In a review in the American Journal of Play (yes, there really is a scholarly journal on play), evidence is provided from controlled studies in rats and some primates. These studies show that when young animals are encouraged to play they develop improved social competence, cognition, and emotional regulation later in life. Play experience also makes them more adaptable to unexpected situations.

It is true that play is not a developmental feature in all species. The capacity (and need) for play is most evident in higher mammals with developed neocortex and that live in complex social environments. Play fighting is adaptive in predator species, like bears and lions that depend on aggression for survival as adults. In all species that exhibit juvenile play, play is a developmental tool that promotes the neocortical executive control regions to control other neural systems.

Play fighting is especially interesting because the juveniles must construct and obey certain rules. They intuitively recognize that they must not bite too hard, for example, and must give the opponent at chance to win sometimes or at least hold their own in the contest. The juveniles are clearly learning self-control, which will serve them well as adult. This reminds me of the touch football games that kids play.

Species that most obviously exhibit juvenile play are humans, dogs, cats, and ravens. In species where adults play, play can have immediate functions such as defusing social tensions and dominance relationships. Rats are an interesting case. They engage in juvenile play much more than other rodent species. Adult rats seem to exhibit novel mental capabilities, especially those involving social interactions that are not so prominent in other rodents.

When members of a play-oriented species are denied access to juvenile play, they can become dysfunctional adults. For example, rats raised in social isolation show physical and chemical deficiencies in their brains and they have behavioral abnormalities linked to impaired executive control function. They show excessive anxiety to stressful or fear-inducing situations. They over-react to benign social interactions. They are less able to coordinate movements with a partner, both in sexual and non-sexual contexts. They are less able to solve mental tasks. Similar problem are seen in monkeys deprived of juvenile play. Being raised by a surrogate mother is emotionally and intellectually devastating, but less so if the surrogate is robot-like and can interact in play-like behavior with the infant.

Juvenile play sculpts the brain to be more adaptable later in life. In modern human society, juvenile play is often obstructed by such externals as over-scheduling, too much adult supervision, and too many restrictions. The restrictions are often for reasons of safety, which is understandable in today's world. When I was a child, we had a lot more freedom to play, and in safety. It was not unusual in the summer time for a kid to leave home after breakfast and not return until supper, going alone to a park or neighbor kid's house to play unsupervised as we wished. Sadly, that is too much freedom these days. In this respect, the "good old days" really were the "good old days."

Source:

Pellis, S. M., Pellis, V. C., and Himmler, B. T. (2014). How play makes for a more adaptable brain. Ame. J. Play. 7 (1) 73-98


"Memory Medic's new book has just been released: "Improve Your Memory for a Healthy Brain." Smashwords.com

Monday, November 24, 2014

How Schools Make Learning Harder Than Necessary

Keep your "nose to the grindstone" is the advice we often give as an essential ingredient of learning difficult tasks. An old joke captures the problem with the old bromide for success, "Keep your eye on the ball, your ear to the ground, your nose to the grindstone, your shoulder to the wheel: Now try to work in that position."

Over the years of teaching, I have seen many highly conscientious students work like demons in their study yet don't seem to learn as much as they should for all the effort they put in. Typically, it is because they don't study smart. And sometimes the problem is created by the teachers' method of instruction.

In an earlier post, I described a learning strategy wherein a student should spend repeated short (say 10-15 minutes) of intense study followed immediately by a comparable rest period of "brain-dead" activity where they don't engage with a new learning task. The idea is that memory of the just-learned material is more likely to be consolidated into long-term memory because there are no mental distractions to erase the temporary working memory while it is in the process of consolidation.

Now, new research now suggests that too much nose-to-the-grindstone can impair learning.
Margaret Schlichting, a graduate student researcher, and Alison Preston, an associate professor of psychology and neuroscience at the University of Texas tested the effect of mental rest with a learning task of remembering two sets of a series of associated photo pairs.  Between the two task sets, the participants rested and were allowed to think about whatever they wanted. Not surprisingly, those who used the rest time to reflect on what they had learned earlier were able to remember more upon re-test. Obviously, in this case, the brain is not really resting, as it is processing (that is, rehearsing) the new learning. But the brain is resting in the sense that no new mental challenges are encountered.

The university press release quotes the authors as saying, "We've shown for the first time that how the brain processes information during rest can improve future learning. We think replaying memories during rest makes those earlier memories stronger, not just impacting the original content, but impacting the memories to come." Despite the fact that this concept has been anointed as a new discovery in a prestigious science journal, the principle has been well-known for decades. I have explained this phenomenon in my memory books as the well-established term of "interference theory of memory,"

What has not been well understood among teachers is the need to alter teaching practices to accommodate this principle. A typical class period involves teachers presenting a back-to-back succession of highly diverse learning objects and concepts. Each new topic interferes with memory formation of the prior topics. An additional interference occurs when a class period is disrupted by blaring announcements from the principal's office, designed to be loud to command attention (which has the effect of diverting attention away from the learning material). The typical classroom has a plethora of other distractions, such as windows for looking outside and multiple objects like animals, pictures, posters, banners, and ceiling mobiles designed to decorate and enliven the room. The room itself is a major distraction.

Then, to compound the problem, the class bell rings, and students rush out into the hall for their next class, socializing furiously in the limited time they have to get to the next class (on a different subject, by a different teacher, in a differently decorated classroom). You can be sure, little reflection occurs on the academic material they had just encountered.

The format of a typical school day is so well-entrenched that I doubt it can be changed. But there is no excuse for blaring loudspeaker announcements during the middle of a class period. Classrooms do not have to be decorated. A given class period does not have to be an information dump on overwhelmed students. Short periods of instruction need to be followed by short, low-key, periods of questioning, discussion, reflection, and application of what has just been taught. Content that doesn't get "covered" in class can be assigned as homework—or even exempted from being a learning requirement. It is better to learn a few things well than many things poorly. Indeed, this is the refreshing philosophy behind the new national science standards known as "Next Generation Science Standards."

Give our kids a rest: the right kind of mental rest.

Sources:


Schlichting, M. L., and Preston, A. R. (2014). Memory reactivation during rest supports upcoming learning of related content Proc. Nat. Acad. Science. Published ahead of print October 20, 2014.

http://scicasts.com/neuroscience/2065-cognitive-science/8539-study-suggests-mental-rest-and-reflection-boost-learning/

http://www.nextgenscience.org/


Dr. Klemm's latest book, available at most retail outlets, is "Mental Biology. The New Science of How the Brain and Mind Relate" (Prometheus). 

Wednesday, November 05, 2014

Insightful Thinking 101

Genius is defined by creativity. Albert Einstein is often regarded as the epitome of genius. Nobody seems to understand his genius other than to say that it bubbled up like uncorked champagne. But the story of his work paints a different picture. His discovery of Special Relativity, for example, came as a stepwise series of small insights spread over many years of incubation.

Einstein used systematic ways of thinking to unleash his creativity. His success was not magic. There was method to his genius. First, Einstein relied heavily on thinking with visual images rather than words. Many famous scientists claim that their best thinking occurs in the form of visual images, even at the level of fantasy. Words and language, according to Einstein, had no role in his creative thought and math was used mainly to express the ideas quantitatively. Einstein, for example, in one of his fantasies visualized himself riding on a beam of light, holding a mirror in front of him. Since the light and the mirror were traveling at the same speed in the same direction, and since the mirror was a little ahead of the light's front, the light could never catch up to the mirror to reflect an image. Thus Einstein could not see himself. Another example of his use of imagery is his thought experiments visualizing train movements. Although fantasy, such thinking is not the product of a hallucinating mind; there is clear logic and order embedded in the fantasy.

A second reason for Einstein's creativity is that he was unafraid, even as an unimpressive student and a patent clerk without recognition as a scientist, to challenge no less an authority than James Clerk Maxwell when the thought experiment could not be explained by current electrodynamic dogma.

Third, Einstein thought long and hard on this problem for over seven years when he published his seminal paper in1905 at the age of 25.  Actually, he said in his autobiography that he started pondering the problem when he was 16. The point is that the revelation did not happen in an instant—it was the product of incubation. Actually, his ideas were fermenting for years, where he repeatedly thought about alternative possibilities and eliminated those that didn't add up. By the process of elimination incubated over a long time of thinking, the final solution became accessible.

This view of creativity is consistent with the view of Linus Pauling, who won two Nobel Prizes and came within a hair of decoding DNA structure that would have won him a third. He said, "To have a good idea, you have to have lots of ideas." All exceptional scientists generate lots of ideas, and then winnow out the ones that are practical for testing by experiment. In other words, Einstein and Pauling are proof that creativity is not as inaccessible for ordinary people as it seems. There are systematic ways for everyone to become more creative.

These ways of thinking can be taught and used by anyone. Young scientists aspire to have an early experience of working for a time in the lab of a famous scientist, in the hope of learning how to make discoveries. Many Nobel Prize winners have been students of other Nobel Prize winners. Consider the case of Hans Krebs, who discovered the energy-production process in cells. His "family tree" of scientists shows the following relationships of science teachers and mentors:

Berthollet (1748-1822)
   Gay-Lussac (1778-1850)
      Liebig (1803-1873)
         Kekule (1829-1896)
            von Baeyer (1835-1917)
               Fischer (1852-1919)
                  Warburg (1883-1970)
                             Krebs (1900- 1981)

All of these men were famous and each of the last four received Nobel Prizes, which began in 1901. A role model for Hans was Otto Myeroff, who worked in the same institute and who received the Nobel Prize in 1922. This tree is cultural, not biological. There was only one scientist in Hans' biological family tree, a distant cousin, who was a physical chemist.

In the years (1926-1930) Hans studied with Otto Warburg, where he learned the value of inventing new tools and techniques for conducting experiments to test ideas about energy transformation in living tissue. Another important lesson was the value of hard work on ideas. Warburg worked long and hard hours all his life; he was working in his lab eight days before he died, at the age of 81.

* * *

Creativity is a subset of a general learning competency that entails correct analysis, understanding, insight, and remembering. Here, I stress the importance of insight, often referred to as "thinking outside the box." Moreover, I make the claim that this competency can be taught and mastered through practice.

This mode of thinking goes by other names, such as lateral thinking or "thinking outside the box." Whatever you call it, such thinking requires breaking the constraints of predispositions, limiting assumptions, bias, mental habit, and rigid past learning.

See if you can solve the problem below, which is a simple illustration of the common problem of self-imposed limitation of thinking:

Problem: draw four straight lines that connect all dots without lifting the pencil off the paper. Each line starts where the other finishes. Can you do it?






In case you didn't figure it out, here is one solution:



Many people can't do this task. Reasons for failure here and with other creativity challenges include:

  1. Improper understanding of the problem. Failure to recognize what is allowed and what is not.
  2. Failure to look beyond the ideas that first emerge.
  3. Being so close to a solution that you keep working with the same flawed approach.

Frame the Issue Properly

The sample dot-connection task above illustrates the problems you get into by the way you have framed the problem. When faced with any problem, it is natural to make certain assumptions about facets of the problem that were not explicitly stated. In the above, case, I didn't say that the lines had to stay within the borders of the dots, but many of you probably made that assumption. You were actually free to make the assumption that it was o.k. to do that.

The way we classify things creates a logjam to new ideas. For example, something in Newton's sensory or cognitive world caused him to see the similarity between an apple and the moon in a new way; of course they were both round, solid bodies. But it is not clear what caused him to perceive what is now obvious, namely that both are subject to the effect of gravity. Even seeing the apple fall from a tree would not be a meaningful mental cue for explaining moon motion to most people, because they are not used to thinking of the moon as "falling." Creative thought is affected by the ways in which we classify things. We put apples and moons into categories; but by insisting on describing and naming them, we restrict the categories to which they belong. Apples are supposed to be round, red, and sweet, while moons are large, yellow, rocky, and far away. The names themselves get in the way of thinking of either as a classless object that is subject to gravity. A lesser order of creativity is commonly seen in the simple realization of the significance of obvious associations. The associations may even be negative (e.g., if penicillin is present on a bacteriological plate, the organisms will NOT grow).

A question calls for an answer: a problem, its solution. The trick is not only to ask questions, but to ask questions or pose problems in the most effective ways. A question can easily limit creative thinking if it restricts the space of potential answers. It therefore is important to pose questions in open-ended ways and ways that do not make too many assumptions about an acceptable answer. A major part of the creativity task is proper formulation of the problem itself.

Improving Creative Thinking Ability

People who have looked carefully at the creative process have learned that everyone of ordinary intelligence has latent creative abilities that can be enhanced by training and by a favorable environment. But many of us have not developed our creative capacity. Our brains seem frozen in cognitive catalepsy, boxed in by rigid thinking.

One book that is dedicated to improving creativity is by D. N. Perkins, The Mind's Best Work. He finds that after-the-fact anecdotes about well-known examples of great leaps of creative thought have generally received little or no close scrutiny of the mental processes that led to them. There are too many opportunities for the real mental correlates of creativity to be lost through excitement and distraction (as part of the "eureka" phenomenon), lack of need or desire to reconstruct the thought processes, and faulty skill and memory in reconstructing the process. Experiments where people have been asked to think aloud or report their thoughts during an episode of invention led Perkins to conclude that creativity arises naturally and comprehensibly from certain everyday abilities of perception, understanding, logic, memory, and thinking style.

Generating Insight

As an indication that creativity can be taught and learned, I offer the following personal anecdote.

"Grade = C.  Klemm: Your work shows a lot of industriousness.  Strive for INSIGHT!"

That note was scrawled across an assignment paper I had turned in to my professor, C. S. Bachofer, at Notre Dame. I had worked very hard on that paper, was quite proud of it, and had expected an A. Decades years later, I could still see that message, seared into my memory like a brand on cow hide. It was as if he meant that I was not smart enough. If true, how was I supposed to make myself smarter?  Isn't that a born capacity? You either have it or you don't.

As the years went by, and I became a professor myself, I gradually came to realize that Professor Bachofer was really saying something else.  He was telling me to discover in my own terms and learning style the tactics and techniques that can develop insight capability.  I now know that it IS possible to learn how to become more insightful.  Some of this may be teachable to others.

Idea generation has little to do with intelligence. I remember a graduate student of mine who had great test scores and all As from six years of college work. As was my practice, I tried helping this student develop a thesis project by giving him a published research paper and asking him what ideas occurred to him? After the first paper, he said nothing particular came to mind other than what was reported in the paper. So, figuring I had just picked a paper that was too mundane, I gave him another paper. Again, the same result occurred.  After about four or five tries with the same result, I said, “I’m afraid this is not going to work. You really should not go into this line of work. In any case, if you persist in this ill-advised quest, you will have to find another major professor.”

So how could this student have generated ideas? First, he should have been looking for alternatives. In reading, for example, I focus on what the author did not say. This not only stimulates me to think of other possibilities but also improves my ability to remember what was written. Thinking about something is the best way to rehearse the memory of it.

Thinking of alternatives requires imagination. Young children have lots of imagination. Unfortunately, school tends to stamp that out in the first few years. This is one reason I like to use mnemonic devices to promote memory. All these devices require imagination, and the more you exercise this capability, the better you can get at it.

Idea generation needs to be valued. School tends to devalue creativity. Expectations are to learn what is dished out and pass a high-stakes test on it. What educators value most is understanding and remembering accepted knowledge. Do we believe students are too dumb for higher level thinking? Do we believe that these higher skills are innate and cannot be taught? Do we believe that maybe they could be taught if we only knew how?


The Creative Process

The literature on the creative process is vast, and I can only summarize it here. Have you seen the advertisement from IBM Corporation, in which there was a long alphabetized list of "old English" words? The ad's caption read, "Anyone could have used these 4,178 words. In the hands of William Shakespeare, they became King Lear." King Lear epitomizes the essence of creativity: to take commonly used and understood ideas and recombine them in elegant new ways. 


Some practical advice on how to think innovatively is provided by Beth Comstock, the CMO at General Electric. She was inspired by a brilliant boss who wasn't afraid to offer an idea before its time. Even though many of his ideas were absurd, many were also gems. None of these would have been born had he not been willing to "put it out there." As Einstein said, "If at first the idea is not absurd, there is no hope for it." The point is that creative ideas often come of the oven half-baked. Typically, the recipe has to be modified.

Comstock's advice includes:

1. Nurture the newborn idea. Absurd ideas are all too easy to dismiss. Be patient with them and protect them from early-stage critical analysis. This accepting attitude lies at the heart of effective brainstorming. Get the ideas out on the table. They often will grow or transform into better ideas. Sit on them. Let them incubate.

2.  Commit to a promising idea. Successful ideas are nurtured by passion. If you believe in the promise of an idea, noodle it to fit a meaningful problem. Do your homework. Smooth the rough patches. Ask others to help make the idea better.


3. Tell others, even when you feel embarrassed about how flakey the idea might be. This clarifies your own thinking and at least a few of your listeners may get intrigued and help you improve the idea.

4. Hang in there. Don't be intimidated by negative feedback. Use such feedback to improve the idea. If necessary, put the idea in storage until improvements come to mind, or new technology or resources become available or others people are more accepting. If you believe in your idea, don't give up.

A fundamental aspect of creative thinking is to be flexible in interpreting what you see or hear. Powers of observation include of course the ability to notice things. But just registering a visual or thought input is not enough. Creative brains see what others only look at. That is, creative brains look for implications.

A basic condition for a creative act is to combine known elements into new combinations or perspectives that have never before been considered. Perkins writes of the utility of deliberately searching for many alternatives so that many combinations and perspectives can be considered. Creativity is much more likely to emerge when a person considers many options and invests the time and effort to keep searching rather than settling for mediocre solutions.

The first and fundamental step in the creative process is to have a clear notion of what the problem is and to be able to frame it appropriately. Recall in the opening example how you framed the dot problem determined whether or not you could solve it. The effective thinker begins by first focusing on the structure of the problem rather than its technical detail.

Creative operations require conceiving alternative solutions. These come from each person's permanent memory store, his or her lifetime data base of knowledge and experience. Memorizing does not impair thinking ― it can empower thinking. Other potential alternatives are brought in from such external sources of input as reading, ideas from colleagues, data bases, and other sources. Next, these alternatives can be processed logically (by associating, sorting, and aligning into new or unusual categories and contexts) or more powerfully by the use of images, abstractions, models, metaphors and analogies.

Thus, knowledge is not the enemy of creativity. One's capacity for creativity depends on the store of knowledge. Einstein, for example, would not have discovered relativity if he had not known basic physics in general and Maxwell's ideas and equations in particular. As my friend, Ann Kellet has said, "To think outside the box, you have to know what is inside the box." The trick is to take a fresh look at what is inside the box.

The next stages involve noticing clues and potential leads, realizing permutations of alternatives that are significant, and finally selecting those thoughts that lead to a new idea. There are dozens of thinking tools that stimulate idea. Check out these tools at the Web sites ideaconnection.com, mindtools.com, and myucoted.com.

The process of considering and choosing among alternative approaches involves a progressive narrowing of options in the early stages of creation and a readiness to revise and reconsider earlier decisions in the later stages. Einstein ran into several blind alleys in his discovery journey. This narrowing process requires the creator to break down and reformulate the categories and relationships of thoughts and facts that are commonly applied to the problems and its usual solutions. The creative thinker examines all reasonable alternatives, including many which at first may not seem "reasonable." Each alternative needs to be examined, not only in isolation, but in relation to other alternatives—and in relation to the initial problem expressed in different ways. The practical problem then becomes one of reducing the size of the problem and alternative solution space to workable dimensions. That may well be why one has to be immersed in the problem for long periods, with subconscious "incubation" operating to help sort through various alternatives and combinations thereof.

Note that all of these operations must occur in the working memory, which unfortunately has very limited capacity. That is probably the reason why insight and creativity are so hard to come by. Researchers of the subject of creativity would do well to look for ways to create more capacity for our working memory and to make it more efficient. The most manipulatible factor would seem to be the mechanics of supplying information input from external sources.

The final stages of creativity are more straightforward. They involve critical and logical analysis, which typically forces a refinement of the emerging ideas. Analysis should force the refinement of premature ideas and re-initiation of the search and selection processes. Sometimes, analysis will force the realization that the wrong problem is being worked or that it needs to be reformulated.


If you have but one wish, let it be for an idea

                                                     ― Percy Sutton 

Further Reading

DeBono, Edward. (2009) Think! Before It's To Late. Vermilion. London.

Klemm, W. R. (1990).Leadership: Creativity and innovation, p. 426-439.Concepts for Air Force Leadership, ed. by R. I. Lester and A. Glenn Morton. Maxwell Air Force Base, Alabama: Air University.

Klemm, W. R. (2001)   Hans' Nobel Prize family. http://peer.tamu.edu/curriculum_modules/Cell_Biology/module_3/storytime3.htmAccessed Augst 15, 2014.

Michalko, Michaeal (2001) Cracking Creativity: The Secrets of Creative Genius. Ten Speed Press. New York.

Norton, John D. Einsteins pathway to special relativity. http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters_2013_Jan_1/origins_pathway/index.html. Accessed Aug. 14, 2014.


Perkins, D. N. (1981). The Mind's Best Work. Harvard Univ. Press, Cambridge.